将决策系统描述为“算法”通常是人们转移决策责任的一种方式。对许多人来说,“算法”指的是一套基于客观经验证据或数据的规则,是一个极度复杂的系统,以致人类很难理解其内部工作原理或预测算法运行时的反应。
但这种描述准确吗?也不总是。
图
算法在AI识图中的应用(来源:Pixabay)
例如,去年12月下旬,斯坦福医学中心把新冠疫苗的分配不当归咎于一种分配“算法”,该算法偏向高级管理人员,而非一线医生。据《麻省理工技术评论》当时的报道,医院声称,为了设计“非常复杂的算法”,医院已经咨询了伦理学家,其中一位代表表示“完全行不通”。尽管许多人认为算法涉及人工智能或机器学习,但该系统实际上是一个医学算法,在功能上是不同的,更像是一个非常简单的公式或者是人类委员会设计的决策树。
这种脱节突显了一个日益严重的问题。随着预测模型的激增,公众在做出关键决策时变得更加谨慎。但决策者在开始制定评估和审计算法的标准时,首先必须定义决策的类别或他们决策适用的辅助工具。给“算法”这个术语保留解释的余地,可能会让一些影响最大的模型超出了确保这类系统对人没有坏处的政策的影响范围。
如何识别算法
那么斯坦福医学中心的“算法”是一种算法吗?这取决于你如何定义这个词。虽然“算法”还没有一个公认的定义,但计算机科学家哈罗德·斯通在年编写的教科书里给出了一个普遍的定义:“算法是精确定义一系列操作的一套规则。”这个定义包罗万象,从配方到复杂的神经网络:基于算法的审计策略涉猎太广泛了。
在统计学和机器学习中,我们通常认为算法是计算机为了解数据执行的指令集。在这些领域中,产生的结构化信息通常称为模型。计算机通过算法从数据中了解到的信息可能看起来像“权重”,可以乘以每个输入因子,也可能要复杂得多。算法本身的复杂程度可能也不同。这些算法产生的影响最终取决于它们所应用的数据和最终模型运行的情况。同样的算法在一种情况下可能会产生积极的影响,而在另一种情况下又会产生截然不同的影响。
在其他领域,上述模型本身被称为算法。尽管这令人感到困惑,但从最广泛的定义来看,这也是准确的:模型是定义一系列操作的规则(通过计算机的训练算法来了解规则,而不是由人类直接表述)。例如,去年在英国,媒体报道一种“算法”不能给由于疫情无法参加考试的学生公平打分。这些报道确实讨论的是模型——把输入(学生过去的表现或老师的评价)转化为输出(分数)的指令集。
斯坦福医学中心发生的事情就好像是人类(包括伦理学家)坐下来,决定该系统应该采用怎样的操作,从而根据员工的年龄和部门等输入信息决定这个人是否应该首先接种疫苗。据我们所知,这一系列操作并没有基于优化某个定量目标的估计程序。这是一套如何让疫苗优先化,以算法的语言固定下来的规范性决策。这种方法在医学术语和广义定义中被视为一种算法,尽管其中唯一涉及的智能是人类。