数据结构论坛

首页 » 分类 » 问答 » 面向大数据的时空数据挖掘第1部分
TUhjnbcbe - 2024/9/10 16:15:00
面向大数据的时空数据挖掘

早期的数据挖掘研究主要针对字符、数值型的商业数据,随着信息技术的不断提高以及移动设备和网络的广泛使用,数据产生的速度越来越快,数据收集的频率越来越高,数据密度的增长越来越显著,这些因素都使得大数据问题成为一种必然的趋势。而在大数据时代下很多商业数据都包含有时间和空间信息,比如设备,建筑,机构等的管理,能量的产生,分布及预测等。

IBMSPSSModeler是参照行业标准CRISP-DM模型设计而成的数据挖掘工具,可支持从数据到更优商业成果的整个数据挖掘过程。通过结合时空数据和其他商业数据,并且运用数据挖掘工具IBMSPSSModeler对时间和空间属性进行观测分析,进而获得对数据的充分理解,并将其应用于商业活动,从而改进决策过程。

面向大数据的时空数据挖掘的重要性

0世纪90年代中后期,数据挖掘领域的一些较成熟的技术,如关联规则挖掘、分类、预测与聚类等被逐渐用于时间序列数据挖掘和空间结构数据挖掘,以发现与时间或空间相关的有价值的模式,并且得到了快速发展。信息网络和手持移动设备等的普遍应用,以及遥感卫星和地理信息系统等的显著进步,使人们前所未有地获取了大量的地理科学数据。这些地理科学数据通常与时间序列相互关联,并且隐含许多不易发现的、又潜在有用的模式。从这些非线性、海量、高维和高噪声的时空数据中提取出有价值的信息并用于商业应用,使得时空数据挖掘具有额外的特殊性和复杂性。因此,寻找有效的时空数据分析技术对于时空数据中有价值的时空模式的自动抽取与分析具有重要意义。

近年来,时空数据已成为数据挖掘领域的研究热点,在国内外赢得了广泛

1
查看完整版本: 面向大数据的时空数据挖掘第1部分