基于多源城市交通出行数据的定制公交需求辨识方法研究
陈汐1,王印海2,代壮3,马晓磊4
1北京航空航天大学交通科学与工程学院,北京
2美国华盛顿大学土木和环境工程系,美国西雅图
3西南交通大学交通运输与物流学院,四川成都
4北京航空航天大学大数据科学与脑机智能高精尖创新中心,北京
摘要:定制公交作为一种新的公交服务模式,对其需求的辨识具有重要实践意义,也是后续线路设计流程的基础。在大数据背景下,通过对海量出行数据中时空信息的挖掘分析,提出一个基于多源数据的定制公交需求分析框架,包括从公交和互联网用户中辨识通勤用户、出行需求的融合及站点选址方法。最后将该方法应用到成都市的出行数据中以验证其有效性,其需求分析结果可为定制公交的线路设计提供依据。
关键词:定制公交;多源数据;数据挖掘;需求辨识
论文引用格式:
陈汐,王印海,代壮,等.基于多源城市交通出行数据的定制公交需求辨识方法研究[J].大数据,,6(6):-.
CHENX,WANGYH,DAIZ,etal.Researchondemandidentificationforcustomizedbusbasedonmulti-sourcemobilitydata[J].BigDataResearch,,6(6):-.
1引言
优先发展公共交通是我国城市发展和交通发展的重大战略方针,且“公交都市”战略中也提出要构建多模式公交系统,以实现新时期城市交通的转型发展。目前公众对城市交通出行个性化、精细化和品质化的要求逐渐提高,因此发展多元化的公交出行服务模式已成为必要趋势。在此背景下,具有需求响应、运行灵活等特点的定制公交开始运营。定制公交通过整合个体的出行需求,为出行起终点(origindestination,OD)、出行时段、服务水平相似的人群(如通勤用户)提供个性化的公共交通服务。常规公交与定制公交的特点对比见表1。这种新的公交服务模式被认为能够有效吸引私家车出行用户转向乘坐公共交通出行。此外,全国各主要城市在新型冠状病毒肺炎疫情防控期间也推出了针对通勤用户的“复工定制公交”线路,保证乘客“一人一座”,以提升市民出行的便捷性和安全性。可见,定制公交可以作为个性化和精细化出行需求市场中一种很好的补充形式。
近几年,“互联网+交通”的发展趋势有效地促进了定制公交这种新的出行模式在国内的推广、普及。运营企业通过搭建线上平台采集出行需求,用户通过手机App等渠道提出个性化的出行需求。基于大数据挖掘、人工智能算法、物联网等技术手段完成对出行需求的整合、线路的规划、运营车辆的调配以及服务信息发布等环节。在线路的实际运营中,公交企业接收乘客反馈的建议,不断对现有线路进行调整、优化,逐步提升服务质量,使定制公交的运营模式形成完整的闭环。针对以上定制公交服务设计流程,已有文献对其中涉及的相关理论方法进行了研究。但大部分文献对出行需求的分析基于小范围出行需求进行调查,对于城市级的线路设计及大规模出行分析,存在研究群体相对较少、数据周期短、分析的准确度有偏差等问题。随着移动通信及互联网技术的发展,针对城市居民的出行需求,实现了由单一数据源到多源数据的采集,如从单一的调查数据的收集,到公交IC卡、手机导航应用的普及,这些技术手段可以采集到大量的出行信息。这些海量、多源的出行数据可以很好地解决单一调查数据难以挖掘城市居民出行规律的问题。因此,如何在多种出行模式下分析乘客的出行规律、融合出行需求,特别是辨识乘客的通勤行为、挖掘用户职住地,辅助定制公交的线路设计以提高其上座率和服务率,是值得深入探讨的问题。
多源交通出行数据符合大数据的“4V”特征,即规模性(volume)、多样性(variety)、价值性(value)和高速性(velocity)。第一,公共交通数据和新型互联网数据的体量巨大。据相关统计数据,来自政府及互联网企业的数据量正从TB量级增长到PB(EB)量级。第二,本文涉及的相关数据类型繁多,即异构多源,包括IC卡、车载GPS、出行导航和规划数据等。第三,多源出行数据具有实时性特点,即出行需求数据可以被实时地采集,并反馈给相关企业的调度和决策人员,研究者需要