数据结构论坛

首页 » 分类 » 定义 » Pandas数据结构DataFrame
TUhjnbcbe - 2023/7/4 22:41:00
北京中科医院假 https://m-mip.39.net/czk/mipso_5153159.html

刚刚接触pandas的朋友,想了解数据结构,就一定要认识DataFrame,接下来给大家详细介绍!

初识DataFrame

importnumpyasnp

importpandasaspd

data={name:[Jack,Tom,LiSa],

age:[20,21,18],

city:[BeiJing,TianJin,ShenZhen]}

print(data)

print()

frame=pd.DataFrame(data)#创建DataFrame

print(frame)

print()

print(frame.index)#查看行索引

print()

print(frame.columns)#查看列索引

print()

print(frame.values)#查看值

{name:[Jack,Tom,LiSa],age:[20,21,18],city:[BeiJing,TianJin,ShenZhen]}

agecityname

BeiJingJack

TianJinTom

ShenZhenLiSa

RangeIndex(start=0,stop=3,step=1)

Index([age,city,name],dtype=object)

[[20BeiJingJack]

[21TianJinTom]

[18ShenZhenLiSa]]

创建DataFrame

方法一:由字典创建字典的key是列索引值可以是1.列表2.ndarray3.Series

#值是列表

data1={a:[1,2,3],

b:[4,5,6],

c:[7,8,9]

}

print(data1)

print()

print(pd.DataFrame(data1))#创建DataFrame

print()

#注意:index是可以给行索引重新命名columns是给列索引重新指定顺序如果没有该列那么产生NaN值

print(pd.DataFrame(data1,index=list(mnp),columns=list(bcad)))

print()

{a:[1,2,3],b:[4,5,6],c:[7,8,9]}

abc

bcad

mNaN

nNaN

pNaN

#值是ndarray注意:用ndarray创建DataFrame值的个数必须相同否则报错

data2={one:np.random.rand(3),

two:np.random.rand(3)

}

print(data2)

print()

print(pd.DataFrame(data2))

{one:array([0.,0.,0.]),two:array([0.,0.,0.])}

onetwo

00..

10..

20..

#值是Series--带有标签的一维数组注意:用Series创建DataFrame值的个数可以不同少的值用Nan填充

data3={one:pd.Series(np.random.rand(4)),

two:pd.Series(np.random.rand(5))

}

print(data3)

print()

df3=pd.DataFrame(data3)

print(df3)

print()

{one:00.

10.

20.

30.

dtype:float64,two:00.

10.

20.

30.

40.

dtype:float64}

onetwo

00.0.

10.0.

20.0.

30.0.

4NaN0.

方法二:通过二维数组直接创建

arr=np.random.rand(12).reshape(3,4)

print(arr)

print()

df1=pd.DataFrame(arr)

print(df1)

print()

df2=pd.DataFrame(arr,index=list(abc),columns=[one,two,three,four])#通过index和columns指定行索引和列索引

print(df2)

[[0....]

[0.569183...]

[0....]]

00....

10....

20....

onetwothreefour

a0....

b0....

c0....

方法三:由字典组成的列表创建DataFrame

data=[{one:1,two:2},{one:5,two:10,three:15}]#每一个字典在DataFrame里就是一行数据

print(data)

print()

df1=pd.DataFrame(data)

print(df1)

print()

df2=pd.DataFrame(data,index=list(ab),columns=[one,two,three,four])

print(df2)

[{one:1,two:2},{one:5,two:10,three:15}]

onethreetwo

01NaN2

.

onetwothreefour

a12NaNNaN

b.0NaN

创建方法四:由字典组成的字典

#columns为字典的keyindex为子字典的key

data={Jack:{age:1,country:China,sex:man},

LiSa:{age:18,country:America,sex:women},

Tom:{age:20,country:English}}

df1=pd.DataFrame(data)

print(df1)

print()

#注意:这里的index并不能给子字典的key(行索引)重新命名但可以给子字典的key重新排序若出现原数组没有的index那么就填充NaN值

df2=pd.DataFrame(data,index=[sex,age,country])

print(df2)

print()

df3=pd.DataFrame(data,index=list(abc))

print(df3)

print()

#columns给列索引重新排序若出现原数组没有的列索引填充NaN值

df4=pd.DataFrame(data,columns=[Tom,LiSa,Jack,TangMu])

print(df4)

JackLiSaTom

age

countryChinaAmericaEnglish

sexmanwomenNaN

JackLiSaTom

sexmanwomenNaN

age

countryChinaAmericaEnglish

JackLiSaTom

aNaNNaNNaN

bNaNNaNNaN

cNaNNaNNaN

TomLiSaJackTangMu

ageNaN

countryEnglishAmericaChinaNaN

sexNaNwomenmanNaN

DataFrame索引

选择行与列

选择列直接用df[列标签]

df=pd.DataFrame(np.random.rand(12).reshape(3,4)*,

index=[one,two,three],columns=[a,b,c,d])

print(df)

print()

print(df[a],,type(df[a]))#取一列

print()

print(df[[a,c]],,type(df[[a,c]]))#取多列

abcd

one92....

two91....

three3....

one92.

two91.

three3.

Name:a,dtype:float64classpandas.core.series.Series

ac

one92.19.

two91.4.

three3.14.classpandas.core.frame.DataFrame

选择行不能通过标签索引df[one]来选择行要用df.loc[one],loc就是针对行来操作的

print(df)

print()

print(df.loc[one],,type(df.loc[one]))#取一行

print()

print(df.loc[[one,three]],,type(df.loc[[one,three]]))#取不连续的多行

print()

abcd

one92....

two91....

three3....

a92.

b11.

c19.

d77.

Name:one,dtype:float64classpandas.core.series.Series

abcd

one92....

three3....classpandas.core.frame.DataFrame

loc支持切片索引--针对行并包含末端df.loc[one:three]

df=pd.DataFrame(np.random.rand(16).reshape(4,4)*,index=[one,two,three,four],

columns=[a,b,c,d])

print(df)

print()

print(df.loc[one:three])

print()

print(df[:3])#切片表示取连续的多行(尽量不用免得混淆)

abcd

one65.89419...

two31....

three54....

four45....

abcd

one65.89419...

two31....

three54....

abcd

one65.89419...

two31....

three54....

iloc也是对行来操作的只不过把行标签改成了行索引并且是不包含末端的

print(df)

print()

print(df.iloc[0])#取一行

print()

print(df.iloc[[0,2]])#取不连续的多行

print()

print(df.iloc[0:3])#不包含末端

abcd

one65.89419...

two31....

three54....

four45....

a65.894

b19.

c31.

d41.

Name:one,dtype:float64

abcd

one65.89419...

three54....

abcd

one65.89419...

two31....

three54....

布尔型索引

df=pd.DataFrame(np.random.rand(16).reshape(4,4)*,index=[one,two,three,four],

columns=[a,b,c,d])

print(df)

print()

d1=df50#d1为布尔型索引

print(d1)

print()

print(df[d1])#df根据d1只返回True的值False的值对应为NaN

print()

abcd

one91....

two49....

three78....

four79....

abcd

oneTrueTrueTrueTrue

twoFalseFalseFalseTrue

threeTrueTrueFalseTrue

fourTrueTrueFalseFalse

abcd

one91....

twoNaNNaNNaN69.

three78..NaN93.

four79..NaNNaN

选取某一列作为布尔型索引返回True所在行的所有列注意:不能选取多列作为布尔型索引

df=pd.DataFrame(np.random.rand(16).reshape(4,4)*,index=[one,two,three,four],

columns=[a,b,c,d],dtype=np.int64)

print(df)

print()

d2=df50

print(d2)

print()

print(df[d2])

abcd

one

two

three

four

oneFalse

twoFalse

threeTrue

fourFalse

Name:b,dtype:bool

abcd

three

选取多列作为布尔型索引返回True所对应的值False对应为NaN没有的列全部填充为NaN

df=pd.DataFrame(np.random.rand(16).reshape(4,4)*,index=[one,two,three,four],

columns=[a,b,c,d],dtype=np.int64)

print(df)

print()

d3=df[[a,c]]50

print(d3)

print()

print(df[d3])

abcd

one

two

three

four91677

ac

oneFalseFalse

twoTrueFalse

threeFalseTrue

fourFalseFalse

abcd

oneNaNNaNNaNNaN

two78.0NaNNaNNaN

threeNaNNaN84.0NaN

fourNaNNaNNaNNaN

多重索引

print(df)

abcd

one

two

three

four91677

print(df[a].loc[[one,three]])#取列再取行

print()

print(df[[a,c]].iloc[0:3])

one49

three6

Name:a,dtype:int64

ac

one

two

three

print(df.loc[[one,three]][[a,c]])#取行再取列

ac

one

three

print(df50)

print()

print(df[df50])

print()

print(df[df50][[a,b]])

abcd

oneFalseTrueFalseFalse

twoTrueFalseFalseTrue

threeFalseTrueTrueTrue

fourFalseTrueFalseTrue

abcd

oneNaN82.0NaNNaN

two78.0NaNNaN84.0

threeNaN84...0

fourNaN89.0NaN77.0

ab

oneNaN82.0

two78.0NaN

threeNaN84.0

fourNaN89.0

DataFrame基本技巧

importnumpyasnp

importpandasaspd

arr=np.random.rand(16).reshape(8,2)*10

#print(arr)

print()

print(len(arr))

print()

df=pd.DataFrame(arr,index=[chr(i)foriinrange(97,97+len(arr))],columns=[one,two])

print(df)

8

onetwo

a2..

b8.6320.

c6.262.

d6..

e6..

f2..

g6..

h9..

查看数据

print(df)

print()

print(df.head(2))#查看头部数据默认查看5条

print()

print(df.tail(3))#查看末尾数据默认查看5条

onetwo

a2..

b8.6320.

c6.262.

d6..

e6..

f2..

g6..

h9..

onetwo

a2..

b8.6320.

onetwo

f2..

g6..

h9..

转置

print(df)

onetwo

a2..

b8.6320.

c6.262.

d6..

e6..

f2..

g6..

h9..

print(df.T)

abcdefg\

one2..6326.....

two1.8270.3.9.3.6.7.

h

one9.

two3.

添加与修改

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[one,two,three,four],columns=[a,b,c,d])

print(df)

print()

df.loc[five]=#增加一行

print(df)

print()

df[e]=10#增加一列

print(df)

print()

df[e]=#修改一列

print(df)

print()

df.loc[five]=#修改一行

print(df)

print()

abcd

one0.7810...

two0....

three0....

four0..5490..

abcd

one0.7810...

two0....

three0....

four0..5490..

five....

abcde

one0.7810...99007

two0....10

three0....10

four0..5490..10

five....00000

abcde

one0.7810...990071

two0....

three0....

four0..5490..

five....000001

abcde

one0.7810...990071

two0....

three0....

four0..5490..

five....

删除del(删除行)/drop(删除列指定axis=1删除行)

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[one,two,three,four],columns=[a,b,c,d])

print(df)

print()

deldf[a]#删除列改变原数组

print(df)

abcd

one0....

two0..1670..

three0....

four0....

bcd

one0...

two0.1670..

three0...

four0...

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[one,two,three,four],columns=[a,b,c,d])

print(df)

print()

d1=df.drop(one)#删除行并返回新的数组不改变原数组

print(d1)

print()

print(df)

abcd

one0....

two0.4260...

three0....

four0....

abcd

two0.4260...

three0....

four0....

abcd

one0....

two0.4260...

three0....

four0....

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[one,two,three,four],columns=[a,b,c,d])

print(df)

print()

d2=df.drop(a,axis=1)#删除列返回新的数组不会改变原数组

print(d2)

print()

print(df)

abcd

one0..6130..

two0....

three0...1760.

four0....

bcd

one0.6130..

two0...

three0..1760.

four0...

abcd

one0..6130..

two0....

three0...1760.

four0....

排序

根据指定列的列值排序同时列值所在的行也会跟着移动.sort_values([列])

#单列

df=pd.DataFrame(np.random.rand(16).reshape(4,4),columns=[a,b,c,d])

print(df)

print()

print(df.sort_values([a]))#默认升序

print()

print(df.sort_values([a],ascending=False))#降序

abcd

00....

10....

20....

30...9910.

abcd

10....

30...9910.

00....

20....

abcd

20....

00....

30...9910.

10....

根据索引排序.sort_index()

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[2,1,3,0],columns=[a,b,c,d])

print(df)

print()

print(df.sort_index())#默认升序

print()

print(df.sort_index(ascending=False))#降序

abcd

20.6110...

10....

30..3540..

00...1990.

abcd

00...1990.

10....

20.6110...

30..3540..

abcd

30..3540..

20.6110...

10....

00...1990.

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[x,z,y,t],columns=[a,b,c,d])

print(df)

print()

print(df.sort_index())#根据字母顺序表排序

abcd

x0....

z0...2.

y0....

t0....

abcd

t0....

x0....

y0....

z0...2.

df=pd.DataFrame(np.random.rand(16).reshape(4,4),index=[three,one,four,two],columns=[a,b,c,d])

print(df)

print()

print(df.sort_index())#根据单词首字母排序

abcd

three0....

one0...9160.

four0....

two0....

abcd

four0....

one0...9160.

three0....

two0....

1
查看完整版本: Pandas数据结构DataFrame