数据结构论坛

首页 » 分类 » 问答 » 数学建模常见模型及算法整理
TUhjnbcbe - 2023/10/27 17:20:00
北京青春痘正规医院 http://m.39.net/news/a_9084445.html

很多同学都是第一次参加数学建模比赛,对于数据分析小白来讲,如何才能在数学建模比赛中通过短期学习冲刺奖项?其实只需要掌握一些常用模型典型算法,并且会用软件快速完成即可。数学建模常用模型大概可以分为以下四大类:分别是评价模型、预测模型、优化模型、数理统计模型。接下来将进行详细说明。

一、数学建模常用模型分类

评价模型(EvaluationModel)

评价模型用于对某个系统、方案或决策进行评估。通过构建合适的指标和评价方法,评价模型能够对不同方案的优劣进行比较和分析。在数学建模比赛中,评价模型通常根据问题的特点和需求,设计合适的评价标准和指标,对不同方案或模型的性能进行评估和比较,以帮助做出决策。

预测模型(PredictionModel)

预测模型能够根据过去的数据和观察结果,对未来的趋势、行为或结果进行预测和推断。预测模型常用于分析时间序列数据、趋势预测、行为模式预测等问题。在数学建模比赛中,预测模型可以根据给定的数据集或者特定规律,构建合适的数学模型,进行未来趋势预测,从而帮助做出决策或规划。

优化模型(OptimizationModel)

优化模型旨在找到使某个目标函数取得最大或最小值的最优解。优化模型适用于求解最佳决策、资源分配、排产安排等问题。在数学建模比赛中,优化模型可以通过建立数学规划模型,确定决策变量、约束条件和目标函数,利用求解方法寻找最优解或次优解,以优化问题的方案或决策。

数理统计模型(StatisticalModel)

数理统计模型用于对数据进行分析、总结和推断。它能够通过建立概率模型和统计分布,对数据的特征、关系和不确定性进行描述和推断。在数学建模比赛中,数理统计模型可以通过对给定数据集的统计分析,推断出数据的分布规律、相关性、假设检验等,为问题提供支持和解决方案。

评价类、预测类、数理统计类模型常用算法如下:

接下来,将逐个模型进行说明。

二、评价模型

1、层次分析法

AHP层次分析法是一种解决多目标复杂问题的定性和定量相结合进行计算决策权重的研究方法。它通过构建层次结构,将复杂的决策问题分解成多个层次,并使用专家判断和比较来确定各个因素的权重,从而得出最终决策结果。比较有效地应用于那些难以用定量方法解决的课题。AHP层次分析法包括两个步骤,分别是权重计算和一致性检验(SPSSAU会默认输出);

SPSSAU软件操作:

AHP层次分析法的数据格式比较特殊,需要手工录入判断矩阵,如下图:判断矩阵解读:门票相对于景色来讲,重要性更高,所以为分;相反,景色相对于门票来讲,则为0.分。交通相对于景色来更重要为2分,其余类似下去。

2、TOPSIS法

TOPSIS法是一种基于距离和相似性度量的多属性决策方法。TOPSIS法首先将多个备选方案与理想解进行比较,计算每个备选方案与理想解之间的相似性和距离。然后根据计算结果,评估和排序各个备选方案,选择最佳的方案。TOPSIS法能够较好地处理多属性决策问题,特别适用于需要考虑多个评价指标的情况。

TOPSIS法分析步骤:

第一步:准备好数据,并且进行同趋势化处理(需要研究者自行处理);

第二步:数据归一化处理解决量纲问题(数据处理-生成变量,通常选择‘平方和归一化’);

第三步:找出最优和最劣矩阵向量(SPSSAU自动处理);

第四步:分别计算评价对象与正理想解距离D+或负理想解距离D-;

第五步:结合距离值计算得出接近程序C值,并且进行排序,得出结论。

SPSSAU软件操作

上传数据至SPSSAU系统,分析页面右侧选择;将变量拖拽到右侧分析框中;点击“开始分析”,操作如下图:

、模糊综合评价

模糊综合评价是一种处理具有模糊信息的评价方法。在模糊综合评价中,将模糊的评价指标通过隶属度函数转化为隶属度,然后根据权重给予不同指标不同的重要性。最后,通过对隶属度进行加权求和,得到一个综合评价结果。模糊综合评价方法能够有效处理不确定性和模糊性的问题,适用于现实世界中的复杂决策。

模糊综合评价分析步骤

第一步:确定评价指标和评语集;

第二步:确定权重向量矩阵A和构造权重判断矩阵R;

第三步:计算权重并进行决策评价。

SPSSAU软件操作

上传数据至SPSSAU系统,分析页面右侧选择,将变量拖拽到右侧相应的分析框中,点击“开始分析”,操作图下图:

4、灰色关联法

灰色关联分析法通过研究数据关联性大小(母序列与特征序列之间的关联程度),通过关联度(即关联性大小)进行度量数据之间的关联程度,从而辅助决策的一种研究方法。

灰色关联法分析步骤:

第一步:确定母序列和特征序列,且准备好数据格式;

第二步:针对数据进行无量纲化处理(通常情况下需要);

第三步:求解母序列和特征序列之间的灰色关联系数值;

第四步:求解关联度值;第五步:对关联度值进行排序,得出结论。

SPSSAU软件操作

将数据上传至SPSSAU系统,分析页面右侧选择;将变量拖拽到右侧相应分析框中,选择“量纲化方式”,点击“开始分析”,操作如下图:

5、数据包络分析DEA

数据包络分析DEA是一种多指标投入和产出评价的研究方法。其应用数学规划模型计算比较决策单元(DMU)之间的相对效率,对评价对象做出评价。数据包络分析DEA时,首先需要分析综合效益值θ,即首先判断DMU是否有DEA有效,如果有效,则说明该DMU较优,反之说明‘非DEA有效’,即相对来说还有提升空间,那么提升空间具体在哪里呢,比如提高还是减少规模呢,可以通过规模效益分析得到。与此同时,如果是‘非DEA有效’,那么具体问题是什么,投入冗余还是产出不足,则可以通过对应的投入冗余或产出不足分析表格得出,具体数字直接查看松驰变量即可。

SPSSAU软件操作

将数据上传至SPSSAU系统,分析页面右侧选择,将变量拖拽到右侧相应分析框中,选择“DEA类型”,点击“开始分析”,操作如下图:

6、秩和比RSR

秩和比(RSR)方法是一种基于排序的模型比较方法。其实质原理是利用了RSR值信息进行各项数学计算,RSR值介于0~1之间且连续,通常情况下,该值越大说明评价越‘优’。

秩和比分析步骤

第一步:列出原始数据,一行代表一个评价对象,一列代表一个评价指标。最终为m*n矩阵;

第二步:对m*n矩阵即原始数据进行计算秩值;

第三步:利用Step2的秩值,计算得到RSR值和RSR值排名;

第四步:列出RSR的分布表格情况并且得到Probit值;

第五步:计算回归方程;

第六步:进行排序,并且进行分档等级。

SPSSAU软件操作

上传数据至SPSSAU系统,分析页面右侧选择,将变量拖拽到右侧相应分析框中,选择“编制方法”、“档次数量”,点击“开始分析”,操作如下图:

三、预测模型

数学建模预测类模型通常用来根据现有数据和已知信息,进行未来事件、趋势或结果的预测和预估。这些模型通过分析历史数据、寻找规律和趋势,并由此推断未来的发展趋势和可能的结果。可以帮助人们做出合理判断、做出准确决策提供参考依据。

预测类分析方法在以往的

1
查看完整版本: 数学建模常见模型及算法整理