数据结构论坛

首页 » 分类 » 分类 » 平安科技王健宗所有AI前沿技术,都可以在
TUhjnbcbe - 2024/3/15 17:25:00

受访者

王健宗,平安科技副总工程师、联邦学习技术部总经理

记者

夕颜

「AI技术生态论」人物访谈栏目是CSDN发起的百万人学AI倡议下的重要组成部分。通过对AI生态顶级大咖、创业者、行业KOL的访谈,反映其对于行业的思考、未来趋势判断、技术实践,以及成长经历。

本文为「AI技术生态论」系列访谈第二十七期,CSDN邀请到平安科技副总工程师、联邦学习技术部总经理王健宗,来详细讲解关于联邦学习,我们必须要了解的事实。

百万人学AI你也有份!今日起,点击阅读原文报名「AI开发者万人大会」,使用优惠码“AIP”,即可免费获得价值元的大会在线直播门票一张。限量张,先到先得。

今天,我们来聊聊联邦学习(FederatedLearning)。人工智能和大数据领域的人对于这个新兴词汇一定不陌生,但关于这个连名字都有多种叫法的技术(联邦学习、联合学习、联盟学习......)究竟是如何实现的,很多人只是一知半解。

风头正盛的联邦学习究竟是什么?

简单来说,联邦学习作为分布式的机器学习范式,最大的特点是可以让多个参与方进行AI协同。本质上来说,联邦学习的目标是为了有效解决“数据孤岛”问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛,实现AI协作。

自从谷歌在年提出了针对手机终端的联邦学习,这个概念开始火爆起来,并被视为下一代人工智能协同算法和协作网络的基础。平安科技提出“联邦智能”的架构,将安全通信、层级加密、可信计算、可视化等真正实现保护用户隐私数据的完整系统囊括进来,联邦学习只是其中一个技术环节。

虽然联邦学习技术更新迭代,也有了不少实践解决方案,但是在实际落地中,在保护数据隐私的前提下进行AI协同,无论是底层技术还是整个部署环节,还有大量的挑战需要克服。

为了更加深入了解联邦学习,CSDN邀请到平安科技副总工程师、联邦学习技术部总经理王健宗,从他个人踏上联邦学习技术和应用研究之路的个人经历开始,到在其带领下构建的自动化机器学习平台“奥卡姆”与联邦智能平台“蜂巢”的技术解析与应用实践,一窥这项技术在信息爆炸的新时代下,到底已经走到了哪一步。

从云AI转向联邦学习,出于对技术的发展趋势预判

王健宗就读于华中科技大学计算机学院计算机系统结构专业,是个典型的拿公派奖学金的“别人家孩子”。年,王健宗被国家公派到美国莱斯大学联合培养博士,当时正值云计算兴起,他参与了莱斯大学与亚马逊公司的云计算服务优化的合作项目,并在读博期间提出了“云AI”的技术方向,完成了关于云服务质量方向的博士论文。

联合培养博士完成后,王健宗当时收到了一些美国的公司和学校的Offer,但是考虑到国内广阔的应用场景、海量的数据,王健宗毅然决然回国,并加盟了网易公司,从零开始参与搭建网易大数据平台。在从事若干年大数据研发后,王健宗开始思考一个问题——这些数据如何与应用场景相结合?他顺其自然想到了若干年前在美国所提出的“云AI”方向,从技术路径上讲,云计算、大数据之后,必然走向人工智能。带着对AI的前景预判,王健宗再次前往美国,在美国佛罗里达大学,师从人工智能国际知名学者李晓林教授,从事人工智能博士后研究工作。

在云计算和人工智能领域深耕数年,王健宗把主要的精力用在分布式人工智能领域,联邦学习算是多年来他一直在做和想做的事。从美国完成博士后项目之后,他回国加入平安科技,专注于金融人工智能和联邦智能领域的研发工作,带领团队自研了自动化机器学习平台“奥卡姆”,以及联邦智能平台“蜂巢”。

揭秘联邦学习平台“蜂巢”

AutoML是机器学习至关重要且有潜力的技术,尤其是与联邦学习的结合更是有着无限广阔的前景。但是今天,我们将重点在联邦学习上。

王健宗说到,联邦学习想要解决的问题十分明确——就是数据孤岛,这也是它目前主要的落地场景。

“蜂巢”的技术架构

他介绍到,蜂巢平台的技术框架,是支持联邦智能原生的。在数据部落中,“蜂巢”包含几大功能模块,包括数据预处理、数据特征化、数据质量的评估等。该平台支持传统的统计机器学习和深度学习的模型,如逻辑回归、线性回归、树模型、CNN/RNN等。在整个模型训练过程中,对梯度进行非对称加密,整合梯度和参数优化、更新模型。

在联邦推理这一过程中,“蜂巢”会把原始的传输的数据进行加密,最终实现推理结果。

在技术研发工程中,他们不仅需要研发有效的分布式机器学习算法,更重要的是如何更好地保障用户数据安全,在此基础上需要开发可靠的加密方法和有效的联邦学习模式。因此,根据在实际应用场景中用户的反馈,例如一些联邦学习算法中涉及大量矩阵大数运算,其通过不断尝试和实验优化矩阵大数运算算子,在密态下矩阵大数运算的效率上有了很大的提升。

这不禁让人好奇,在平安科技内部,“蜂巢”的背后是怎样一支团队呢?

从王健宗的口中CSDN得知,这支团队是由平安集团首席科学家肖京博士指导,由他本人带领的业内联邦学习专属团队,主要的目标是推动AutoML、联邦学习、AI翻译以及深度图领域的生态发展,探索行业应用与前沿AI技术进行深度、自动化融合的方式,近期在多项AI比赛榜单名列第一的自动化机器学习平台“奥卡姆”就也出自这支团队之手。

“蜂巢”作为平安科技的主要联邦学习平台,在底层技术和设计上有何独特之处?

王健宗介绍,如何打造和实现企业级的联邦智能平台是平安科技的目标,因此,“蜂巢”从最初的架构设计上就考虑到了在平安集团内各个专业子公司之间就存在着很多数据壁垒,金融行业对数据隐私的保护和监管要求是非常严格,企业级的联邦智能平台就一定要满足稳定、安全、合规的要求。

为说明这一点,王健宗举了一个例子。“国内金融机构中很常用的加密方式是国密算法,很多的公司对于任何信息的传输和加密都要求采用国密算法,这与我们在业界常见差分隐私和同态加密都不相同,而蜂巢平台能充分支持了国密SM2、国密SM4、混淆电路、差分隐私和同态加密等不同的加密方式,以满足实际企业业务场景的不同需求。”

另外,蜂巢平台采用了完全自主研发的梯度处理方法,可以做到真正适用于企业之间不同的应用场景,通过更加高效、更加健全和更加稳定更新机制,从而保障参与各方能够实现最高效的建模流程。

在联邦学习技术研发迭代期间,王健宗和团队总结出了构建联邦学习平台的几个要点,在这里分享给大家参考:

1)如何根据不同业务场景改造联邦学习算法?

改造联邦学习算法的关键技术之一就是对各方本地计算得到的参数进行联邦聚合,针对不同的业务场景需要选择不同的聚合方法:例如在数据样本量较大、对性能要求较高的情况下,平安科技提供了FedAvg方法,能够在保证性能的前提下极大程度地满足业务基本需求;针对小样本的联邦学习,自研了FedSmart算子,能够更好地优化参数,提升模型效果。除此之外,还根据其他业务场景定制化研发了一些聚合算子。

2)如何灵活地实现加密功能?

保障数据安全是联邦学习技术的核心,针对不同的性能要求,平安联邦学习平台提供了不同等级的加密模式:对于加密要求严格的业务方,提供了国密加密的加密模式,除此之外,还支持信道加密模式等,以适应更多的业务场景。

3)如何提升联邦建模的效率?

联邦学习技术的落地需要考虑耗时效率问题,多方计算、加密传输等方面都会增加整体的耗时。针对该问题,平安联邦智能平台设计了大量矩阵大数运算算子用于实现各计算模块,对加密算子和数据结构也进行了优化,同时使用了团队自主研发的新网络编码技术,使其能够更好地支持大批量数据的运算,在不影响模型效果的前提下尽可能地提高建模效率。

“蜂巢”支持哪些算法和训练模型?

图源:视觉中国

“蜂巢”支持机器学习、深度学习等多种算法,结合平安自研底层硬件加速技术解决方案,对比竞品速度提升50%,具体到算法和AI模型训练,以及自研底层硬件技术解决方案,平安是如何做到的?

据王健宗介绍,首先,在蜂巢联邦学习平台的底层的算法设计上分为四个不同领域和方向。

第一部分是基础的联邦学习算法,包括常见的逻辑回归、各类树模型和Boosting算法,以及CNN、RNN等深度学习网络,支持TensorFlow和PyTorch等各种主流框架等,充分兼容不同的建模场景,这些是蜂巢联邦学习平台的核心基础。

第二个部分是算子层的深度支持和设计,比如,从底层设计上支持图计算算子,基于Gather-Apply-Scatter的结构抽象高层次算法支撑库,实现高效的信息收集、运算和全局更新的处理,使得蜂巢平台的联邦图计算算法有非常好的时效性表现。

第三个部分是异构计算,目前联邦学习算法的性能受限于加密和通信,效率表现往往不够好,对此蜂巢平台用GPU等异构计算芯片来加速联邦学习的加密和通信过程,再加上结合前面提到的算子层优化,从而达到了提速50%的效果,这也是蜂巢在深入实际应用场景中,解决企业间联邦学习建模的痛点之一。

最后一个部分是安全加密的部分,举个例子,在实际的建模和推理过程中,重要的模型参数、每个用户本地的数据等关键信息都是存放在安全容器中的,每一次访问都需要经过安全审计和加密,从而可以达到很好的隐私和安全保护效果。

联邦学习能与机器学习算法结合,还有哪些新可能?

联邦学习与机器学习两者的结合是近年来的研究热点。对此,王健宗介绍,联邦学习除了可以和经典机器学习算法结合应用在分类、预测等场景,在一些细分领域也有很好的应用场景。

比如,在推荐系统中可以与协同过滤技术相结合,多方基于矩阵分解(MatrixFactorization)技术进行联合推荐;在医疗健康领域,多方可以通过深度学习模型例如U-Net、ResNet等进行医学成像模型的联合训练以提高模型准确度;在机器翻译领域,多方在训练语料对不出本地的前提下进行联合建模,最大化翻译模型的准确性;在OCR领域,联邦学习同样可以通过共享模型参数,充分利用他方的训练样本信息来弥补己方在一样识别场景中数据匮乏的不足,提高字符识别准确度。

此外,王健宗也提到也可以积极探索联邦学习与AutoML、GNN等领域的技术结合与应用。蜂巢联邦学习平台在进行联邦学习建模的过程中支持多种不同的自动化调参方式,可以更加高效地找到最佳的模型参数以达到更好的效果。对于图神经网络技术,联邦学习也同样可以通过结合图结构数据的特征,增加对图卷积等算子的支持和优化,从而实现更加丰富应用场景。

正如他所说,联邦智能之于联邦学习,就像是人工智能之于深度学习,所有人工智能的前沿技术,都可以在联邦智能的研究和发展中大展身手。从原始数据的传输上来说,联邦学习减少了原始数据传输至中心服务器的通信开销,但是由于大量的模型训练交互,增加了交互通信成本。加密是必不可少的一环,但加密本身往往会影响联邦学习的效率。在实际的工程中,需要针对不同的应用场景,找到“高效”与“可用”之间的平衡。

图源:视觉中国

同时,联邦学习也有许多IoT应用场景,“现在进入5G时代,我们可以积极思考5G能够给联邦学习的通信带来什么便利之处,使联邦学习的能力可以赋能普惠AI。未来,联邦学习与量子通信的结合也是我们很看好的一个方向,相信可以给联邦学习带来质的提升。基于传统的网络编码的思路,我们可以在联邦学习多方通信的过程中通过引入中间节点,分别用于接收和转发经过线性或函数加密的参数信息,通过网络编码通信框架实现在每一个信道上传输的参数都不可读,而在接收端有效解码的效果,”王健宗说道。

联邦学习底层技术是否成熟?

当前,联邦学习底层技术是否成熟?目前存在哪些短板?相信这些问题是大家关心且有望找出突破口的地方。

王健宗认为,目前联邦学习底层技术相对来说日渐成熟,目前的短板则是在于计算算力以及带有加密的通信方面,虽然英特尔SGX,ARM的TrustZone可以支持部分联邦学习的场景,但目前还没有联邦学习专用芯片,联邦学习也没有统一的业内标准和相关协议。

产业落地难点在哪?

当前,平安科技的联邦智能平台定位是服务于营销、获客、定价、风控、智慧城市和智慧医疗,“蜂巢”能够提供智慧金融、智慧城市、智慧医疗商用级的一站式解决方案,并研发了具备联邦智能能力的联邦机器人,以机器人为服务终端进行数据采集与联合建模,完成金融领域下的客户识别与定制化服务。

我们都知道,本质上来说,联邦学习的目标就是解决“数据孤岛”问题,以及在保障数据隐私和安全的前提下实现人工智能。但不得不提的是,在实际落地中,这仍然是一大挑战,举一个很简单的例子,在联邦学习中,在不共享数据的前提下协同建模,有一个经常被大家利用的方法就是梯度共享,但不幸的是,梯度共享的方法在有限条件下可以被成功攻破。这些试图保护数据隐私的学习模型被攻破,未来还会有效吗?这次事件暴露出的联邦学习的隐私安全性问题该怎么保障让人心生疑虑,也为未来技术提出来更高的要求。

对此,王健宗解释到,以平安科技为例,在做联邦学习时,他们对隐私安全性有不同层级的设定。仅依赖于梯度共享只能解决联邦学习科研层面的问题。在实际的工程中,平安科技做了很多工作保护梯度共享机制下的联邦学习建模,比如,在传输和计算运用了同态加密的梯度,不仅要保证底层数据的安全性和隐私性,同时对梯度信息也要进行保护。

虽然有应对的方法,但涉及到数据隐私,类似问题的存在仍不能掉以轻心。

未来趋势

对于联邦学习的未来发展,王健宗还有哪些观点与思考?

他认为,联邦学习的

1
查看完整版本: 平安科技王健宗所有AI前沿技术,都可以在