数据结构论坛

首页 » 分类 » 定义 » 大数据分析的特点有哪些这五点很常见
TUhjnbcbe - 2024/4/5 18:46:00
北京中科白癜风医院地址 https://jbk.39.net/yiyuanfengcai/video_bjzkbdfyy/

在当今的大数据时代,不仅IT行业的人们需要了解与大数据相关的知识,而且传统行业的从业者和普通大学生也应了解某些大数据知识。新的基础架构计划未来,大数据技术将开始得到全面应用,大数据还将重塑整个产业结构。

要理解大数据,我们必须首先从大数据的概念开始。与人工智能的概念不同,大数据的概念相对清晰,大数据的技术体系也已经成熟。为了解释大数据的概念,您可以从数据本身的特征开始,然后从方案,应用和行业逐步扩展。

大数据本身的特点通常集中在五个方面,即数据量,数据结构多样性,数据价值密度,数据增长速度和可信度对这五个维度的理解和认识是理解大数据概念的关键。当然,随着大数据技术的发展及其在行业中的应用,数据本身的规模也在一定程度上得到了扩展,而这些扩展本身也是对大数据概念的一种丰富和改进。而大数据分析的特点和以上五个方面也是密不可分的。

大数据分析的特点一:数据分析量大

数据量本身就是聚合的概念。不是数据量大的数据被称为大数据,传统信息系统生成的“小数据”也是大数据分析的重要组成部分,这点必须清楚。当前,从大数据的数据源的角度来看,它主要集中在互联网,物联网和传统信息系统三个渠道。当前物联网数据的比例相对较大。相信在5G时代,物联网仍将是大数据的主要数据源。

大数据分析的特点二:数据分析结构多样性

与创新信息系统(ERP)中的数据不同,大数据的数据类型非常复杂,包括结构化数据,非结构化数据和半结构化数据,这对传统数据分析技术提出了巨大挑战,这也是大数据技术兴起的重要原因。在工业互联网时代,大数据数据结构的多样性将得到进一步体现,这也给数据价值过程带来了新的挑战。

大数据分析的特点三:数据价值密度

与传统信息系统相比,大数据中的数据价值密度相对较低,这就需要更快,更方便的方式来完成数据值提取过程,这也是当前大数据平台所

1
查看完整版本: 大数据分析的特点有哪些这五点很常见